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Abstract

Humanoid robots are promising to acquire various skills by imitating human
behaviors. However, existing algorithms are only capable of tracking smooth,
low-speed human motions, even with delicate reward and curriculum design. This
paper presents a physics-based humanoid control framework, aiming to master
highly-dynamic human behaviors such as Kungfu and dancing through multi-
steps motion processing and adaptive motion tracking. For motion processing,
we design a pipeline to extract, filter out, correct, and retarget motions, while
ensuring compliance with physical constraints to the maximum extent. For motion
imitation, we formulate a bi-level optimization problem to dynamically adjust
the tracking accuracy tolerance based on the current tracking error, creating an
adaptive curriculum mechanism. We further construct an asymmetric actor-critic
framework for policy training. In experiments, we train whole-body control policies
to imitate a set of highly-dynamic motions. Our method achieves significantly
lower tracking errors than existing approaches and is successfully deployed on the
Unitree G1 robot, demonstrating stable and expressive behaviors. The project page
is https://kungfu-bot.github.io.

1 Introduction
Humanoid robots, with their human-like morphology, have the potential to mimic various human
behaviors in performing different tasks [1]. The ongoing advancement of motion capture (Mo-
Cap) systems and motion generation methods has led to the creation of extensive motion datasets
[2, 3], which encompass a multitude of human activities annotated with textual descriptions [4].
Consequently, it becomes promising for humanoid robots to learn whole-body control to imitate
human behaviors. However, controlling high-dimensional robot actions to achieve ideal human-like
performance presents a substantial challenge. One major difficulty arises from the fact that motion
sequences captured from humans may not comply with the physical constraints of humanoid robots,
including joint limits, dynamics, and kinematics [5, 6]. Hence, directly training policies through
Reinforcement Learning (RL) to maximize rewards (e.g., the negative tracking error) often fails to
yield desirable policies, as it may not exist within the solution space.

Recently, several RL-based whole-body control frameworks have been proposed to track motions
[7, 8], which often take a reference kinematic motion as input and output the control actions for
a humanoid robot to imitate it. To address physical feasibility issues, H2O and OmniH2O [9, 10]
remove the infeasible motions using a trained privileged imitation policy, producing a clean motion
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dataset. ExBody [7] constructs a feasible motion dataset by filtering via language labels, such as
‘wave’ and ‘walk’. Exbody2 [5] trains an initial policy on all motions and uses the tracking error
to measure the difficulty of each motion. However, it would be costly to train the initial policy and
find an optimal dataset. There is also a lack of suitable tolerance mechanisms for difficult-to-track
motions in the training process. As a result, previous methods are only capable of tracking low-speed
and smooth motions. Recently, ASAP [6] introduces a multi-stage mechanism and learned a residual
policy to compensate for the sim-to-real gap, reducing the difficulties in tracking agile motions.
However, ASAP involves a total of four training stages, and the training of residual policy requires
MoCap systems to record real-robot states.

In this paper, we propose Physics-Based Humanoid motion Control (PBHC), which utilizes a
two-stage framework to tackle the challenges associated with agile and highly-dynamic motions.
(i) In the motion processing stage, we first extract motions from videos and establish physics-based
metrics to filter out human motions by estimating physical quantities within the human model, thereby
eliminating motions beyond the physical limits. Then, we compute contact masks of motions followed
by motion correction, and finally retarget processed motions to the robot using differential inverse
kinematics. (ii) In the motion imitation stage, we propose an adaptive motion tracking mechanism
that adjusts the tracking reward via a tracking factor. Perfectly tracking hard motions is impractical
due to imperfect reference motions and the need of smooth control, so we adapt the tracking factor to
different motions based on the tracking error. We then formulate a Bi-Level Optimization (BLO) [11]
to derive the optimal factor and design an adaptive update rule that estimates the tracking error online
to dynamically refine the factor during training.

Building on the two-stage framework, we design an asymmetric actor-critic architecture for policy
optimization. The critic adopts a reward vectorization technique and leverages privileged information
to improve value estimation, while the actor relies solely on local observations. In experiments, PBHC
enables whole-body control policies to track highly-dynamic motions with lower tracking errors than
existing methods. We further demonstrate successful real-world deployment on the Unitree G1 robot,
achieving stable and expressive behaviors, including complex motions like Kungfu and dancing.

2 Preliminaries
Problem Formulation. We adopt the Unitree G1 robot [12] in our work, which has 23 degrees
of freedom (DoFs) to control, excluding the 3 DoFs in each wrist of the hand. We formulate
the motion imitation problem as a goal-conditional RL problem with Markov Decision Process
M = (S,A,Sref , γ, r, P ), where S and Sref are the state spaces of the humanoid robot and refer-
ence motion, respectively, A is the robot’s action space, r is a mixed reward function consisting
motion-tracking and regularization rewards, and P is the transition function depending on the robot
morphology and physical constraints. At each time step t, the policy π observes the proprioceptive
state spropt of the robot and generates action at, with the aim of obtaining the next-state st+1 that fol-
lows the corresponding reference state sreft+1 in the reference trajectory [sref0 , . . . , srefN−1]. The action
at ∈ R23 is the target joint position for a PD controller to compute the motor torques. We adopt an
off-the-shelf RL algorithm, PPO [13], for policy optimization with an actor-critic architecture.

Reference Motion Processing. For human motion processing, the Skinned Multi-Person Linear
(SMPL) model [14] offers a general representation of human motions, using three key parameters:
β ∈ R10 for body shapes, θ ∈ R24×3 for joint rotations in axis-angle representation, and ψ ∈ R3 for
global translation. These parameters can be mapped to a 3D mesh consisting of 6,890 vertices via
a differentiable skinning function M(·), which formally expressed as V =M(β,θ,ψ) ∈ R6890×3.
We employ a human motion recovery model to estimate SMPL parameters (β,θ,ψ) from videos,
followed by additional motion processing. The resulting SMPL-format motions are then retargeted to
G1 through an Inverse Kinematics (IK) method, yielding the reference motions for tracking purposes.

3 Methods
An overview of PBHC is illustrated in Fig. 1. First, raw human videos are processed by a Human
Motion Recovery (HMR) model to produce SMPL-format motion sequences. These sequences are
filtered via physics-based metrics and corrected using contact masks. The refined motions are then
retargeted to the G1 robot. Finally, each resulting trajectory serves as reference motion for training
a separate RL policy, which is then deployed on the real G1 robot. In the following, we detail the
motion processing pipeline (§3.1), adaptive motion tracking module (§3.2) and RL framework (§3.3).

2



Motion 
Estimation

Feasible Motions 

IK-based Retargeting  &
Contact Mask Extraction

action

observation

ref

state

𝜎
r

Update

Simulation

··
·

Optimize
‖vt − v̂t‖2

‖qt − q̂t‖2

‖pt − p̂t‖2

Policy11 10 10 11

Reference Trajectory & 
Contact Mask

Human Video

Physics 
Based 
Motion 
Filtering

(a) Multi-Steps Motion Processing (b) Adaptive Motion Tracking

(c) RL Training Framework

Deploy

Figure 1: An overview of PBHC that includes three core components: (a) motion extraction from
videos and multi-steps motion processing, (b) adaptive motion tracking based on the optimal tracking
factor, (c) the RL training framework and sim-to-real deployment.

3.1 Motion Processing Pipeline

We propose a motion processing pipeline to extract motion from videos for humanoid motion tracking,
comprising four steps: (i) SMPL-format motion estimation from monocular videos, (ii) physics-based
motion filtering, (iii) contact-aware motion correction, and (iv) motion retargeting. This pipeline
ensures that physically plausible motions can be transferred from videos to humanoid robots.

Motion Estimation from Videos. We employ GVHMR [15] to estimate SMPL-format motions
from monocular videos. GVHMR introduces a gravity-view coordinate system that naturally aligns
motions with gravity, eliminating body tilt issues caused by reconstruction solely relying on the
camera coordinate system. Furthermore, it mitigates foot sliding artifacts by predicting foot stationary
probabilities, thereby enhancing motion quality.

Physics-based Motion Filtering. Due to reconstruction inaccuracies and out-of-distribution issues
in HMR models, motions extracted from videos may violate physical and biomechanical constraints.
Thus, we try to filter out these motions via physics-based principles. Previous work [16] suggests that
proximity between the center of mass (CoM) and center of pressure (CoP) indicates greater stability,
and proposes a method to estimate CoM and CoP coordinates from SMPL data. Building on this, we
calculate the projected distance of CoM and CoP on the ground for each frame and apply a threshold
to assess stability. Specifically, let p̄CoM

t = (pCoM
t,x , pCoM

t,y ) and p̄CoP
t = (pCoP

t,x , pCoP
t,y ) denote the

projected coordinates of CoM and CoP on the ground at frame t respectively, and ∆dt represents the
distance between these projections. We define the stability criterion of a frame as

∆dt = ∥p̄CoM
t − p̄CoP

t ∥2 < ϵstab, (1)
where ϵstab represents the stability threshold. Then, given an N -frame motion sequence, let B =
[t0, t1, . . . , tK ] be the increasingly sorted list of frame indices that satisfy Eq. (1), where tk ∈ [1, N ].
The motion sequence is considered stable if it satisfies two conditions: (i) Boundary-frame stability:
1 ∈ B and N ∈ B. (ii) Maximum instability gap: the maximum length of consecutive unstable frames
must be less than threshold ϵN, i.e., maxk tk+1 − tk < ϵN. Based on this criterion, motions that are
clearly unable to maintain dynamic stability can be excluded from the original dataset.

Motion Correction based on Contact Mask. To better capture foot-ground contact in motion data,
we estimate contact masks by analyzing ankle displacement across consecutive frames, based on the
zero-velocity assumption [17, 18]. Let pl-anklet ∈ R3 denote the position of the left ankle joint at time
t, and cleftt ∈ {0, 1} the corresponding contact mask. The contact mask is estimated as

cleftt = I[∥pl-anklet+1 − pl-anklet ∥22 < ϵvel] · I[pl-anklet,z < ϵheight], (2)
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where ϵvel and ϵheight are empirically chosen thresholds. Similarly for the right foot.

To address minor floating artifacts not eliminated by threshold-based filtering, we apply a correction
step based on the estimated contact mask. Specifically, if either foot is in contact at frame t, a vertical
offset is applied to the global translation. Let ψt denotes the global translation of the pose at time t,
then the corrected vertical position is:

ψcorr
t,z = ψt,z −∆ht, (3)

where ∆ht = minv∈Vt
pvt,z is the lowest z-coordinate among the SMPL mesh vertices Vt at frame t.

While the correction alleviates floating artifacts, it may cause frame-to-frame jitter. We address this
by applying Exponential Moving Average (EMA) to smooth the motion.

Motion Retargeting. We adopt an inverse kinematics (IK)-based method [19] to retarget processed
SMPL-format motions to the G1 robot. This approach formulates a differentiable optimization
problem that ensures end-effector trajectory alignment while respecting joint limits.

To enhance motion diversity, we incorporate additional data from open-source datasets, AMASS [4]
and LAFAN [20]. These motions are partially processed through our pipeline, including contact mask
estimation, motion correction, and retargeting.

3.2 Adaptive Motion Tracking

3.2.1 Exponential Form Tracking Reward

The reward function in PBHC, detailed in Appendix C.2, comprises two components: task-specific
rewards, which enforce accurate tracking of reference motions, and regularization rewards, which
promote overall stability and smoothness.

The task-specific rewards include terms for aligning joint states, rigid body state, and foot contact
mask. These rewards, except the foot contact tracking term, follow the exponential form as:

r(x) = exp(−x/σ), (4)

where x represents the tracking error, typically measured as the mean squared error (MSE) of
quantities such as joint angles, while σ controls the tolerance of the error, referred to as the tracking
factor. This exponential form is preferred over the negative error form because it is bounded,
helps stabilize the training process, and provides a more intuitive approach for reward weighting.
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Figure 2: Illustration of the effect of
tracking factor σ on the reward value.

Intuitively, when σ is much larger than the typical range of
x, the reward remains close to 1 and becomes insensitive
to changes in x, while an overly small σ causes the reward
to approach 0 and also reduces its sensitivity, highlighting
the importance of choosing σ appropriately to enhance re-
sponsiveness and hence tracking precision. This intuition
is illustrated in Fig. 2.

3.2.2 Optimal Tracking Factor

To determine the choice of the optimal tracking factor, we
introduce a simplified model of motion tracking and formulate it as a bi-level optimization problem.
The intuition behind this formulation is that the tracking factor σ should be chosen to minimize
the accumulated tracking error of the converged policy over the reference trajectory. In manual
tuning scenarios, this is typically achieved through an iterative process where an engineer selects a
value for σ, trains a policy, observes the results, and repeats the process until satisfactory performance
is attained.

Given a policy π , there is a sequence of expected tracking error x ∈ RN
+ for N steps, where xi

represents the expected tracking error at the i-th step of the rollout episodes. Rather than optimizing
the policy directly, we treat the tracking error sequence x as decision variables. This allows us to
reformulate the optimization problem of motion tracking as:

max
x∈RN

+

J in(x, σ) +R(x), (5)
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where the internal objective J in(x, σ) =
∑N

i=1 exp(−xi/σ) is the simplified accumulated reward
induced by the tracking reward in Eq. (4), and we introduce R(x) to capture all additional effects
beyond J in, including environment dynamics and other policy objectives such as extra rewards.
The solution x∗ to Eq. (5) corresponds to the error sequence induced by the optimal policy π∗.
Subsequently, the optimization objective of σ is to maximize the obtained accumulated negative
tracking error Jex(x∗) =

∑N
i=1−x∗i , the external objective, formalized as the following bi-level

optimization problem:

max
σ∈R+

Jex(x∗), s.t. x∗ ∈ arg max
x∈RN

+

J in(x, σ) +R(x). (6)

Under additional technical assumptions, we can solve Eq. (6) and derive that the optimal tracking
factor is the average of the optimal tracking error, as detailed in Appendix A.

σ∗ =
(∑N

i=1
x∗i

)
/N. (7)

3.2.3 Adaptive Mechanism
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Figure 3: Closed-loop adjustment of tracking
factor in the proposed adaptive mechanism.
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While Eq. (7) provides a theoretical guidance for determining the tracking factor, the coupling
between σ∗ and x∗ creates a circular dependency that prevents direct computation. Additionally, due
to the varying quality and complexity of reference motion data, selecting a single, fixed value for
the tracking factor that works for all motion scenarios is impractical. To resolve this, we design an
adaptive mechanism that dynamically adjusts σ during training through a feedback loop between
error estimation and tracking factor adaptation.

In this mechanism, we maintain an Exponential Moving Average (EMA) x̂ of the instantaneous
tracking error over environment steps. This EMA serves as an online estimate of the expected tracking
error under the current policy, and during training this value should approach the average optimal
tracking error

(∑N
i=1 x

∗
i

)
/N under the current factor σ. At each step, PBHC updates σ to the

current value of x̂, creating a feedback loop where reductions in tracking error lead to tightening of σ.
This closed-loop process drives further policy refinement, and as the tracking error decreases, the
system converges to an optimal value of σ that asymptotically solves Eq. (9), as illustrated in Fig. 3.

To ensure stability during training, we constrain σ to be non-increasing and initialize it with a
relatively large value, σinit. The update rule is given by Eq. (8). As shown in Fig. 4, this adaptive
mechanism allows the policy to progressively improve its tracking precision during training.

σ ← min(σ, x̂). (8)

3.3 RL Training Framework

Asymmetric Actor-Critic. Following previous works [6, 21], the time phase variable ϕt ∈ [0, 1]
is introduced to represent the current progress of the reference motion linearly, where ϕt = 0
denotes the start of a motion and ϕt = 1 denotes the end. The observation of the actor sactort
includes the robot’s proprioception spropt and the time phase variable ϕt. The proprioception spropt =

[qt−4:t, q̇t−4:t,ω
root
t−4:t, g

proj
t−4:t,at−5:t−1] includes 5-step history of joint position qt ∈ R23, joint
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velocity q̇t ∈ R23, root angular velocity ωroot
t ∈ R3, root projected gravity gprojt ∈ R3 and last-step

action at−1 ∈ R23. The critic receives an augmented observation scrtict , including spropt , time phase,
reference motion positions, root linear velocity, and a set of randomized physical parameters.

Reward Vectorization. To facilitate the learning of value function with multiple rewards, we
vectorize rewards and value functions as: r = [r1, . . . , rn] and V (s) = [V1(s), . . . , Vn(s)] following
Xie et al. [22]. Rather than aggregating all rewards into a single scalar, each reward component
ri is assigned to a value function Vi(s) that independently estimates returns, implemented by a
critic network with multiple output heads. All value functions are aggregated to compute the action
advantage. This design enables precise value estimation and promotes stable policy optimization.

Reference State Initialization. We use Reference State Initialization (RSI) [21], which initializes the
robot’s state from reference motion states at randomly sampled time phases. This facilitates parallel
learning of different motion phases, significantly improving training efficiency.

Sim-to-Real Transfer. To bridge the sim-to-real gap, we adopt domain randomization by varying
the physical parameters of the simulated environment and humanoids. The trained policies are
validated through sim-to-sim testing before being directly deployed to real robots, achieving zero-shot
sim-to-real transfer without any fine-tuning. Details are in Appendix C.3.

4 Related Works

Humanoid Motion Imitation. Robot motion imitation aims to learn lifelike and natural behaviors
from human motions [21, 23]. Although there exist several motion datasets that contain diverse mo-
tions [24, 25, 4], humanoid robots cannot directly learn the diverse behaviors due to the significantly
different physical structures between humans and humanoid robots [6, 26]. Meanwhile, most datasets
lack physical information, such as foot contact annotations that would be important for robot policy
learning [27, 28]. As a result, we adopt physics-based motion processing for motion filtering and
contact annotation. After obtaining the reference motion, the humanoid robot learns a whole-body
control policy to interact with the simulator [29, 30], with the aim of obtaining a state trajectory close
to the reference [31, 32]. However, learning such a policy is quite challenging, as the robot requires
precise control of high-dimensional DoFs to achieve stable and realistic movement [7, 8]. Recent
advances adopt physics-based motion filtering and RL to learn whole-body control policies [5, 10],
and perform real-world adaptation via sim-to-real transfer [33]. However, because of the lack of
tolerance mechanisms for hard motions, these methods are only capable of tracking relatively simple
motions. Other works also combine teleoperation [34, 35] and independent control of upper and
lower bodies [36], while they may sacrifice the expressiveness of motions. In contrast, we propose an
adaptive mechanism to dynamically adapt the tracking rewards for agile motions.

Humanoid Whole-Body Control. Traditional methods for humanoid robots usually learn indepen-
dent control policies for locomotion and manipulation. For the lower-body, RL-based controller have
been widely adopted to learn locomotion policies for complex tasks such as complex-terrain walking
[37, 38], gait control [39], standing up [40, 41], jumping [42], and even parkour [43, 44]. However,
each locomotion task requires delicate reward designs, and human-like behaviors are difficult to obtain
[45, 46]. In contrast, we adopt human motion as references, which is straightforward for robots to
obtain human-like behaviors. For the upper-body, various methods propose different architectures to
learn manipulation tasks, such as diffusion policy [47, 48], visual-language-action model [49, 50, 51],
dual-system architecture [52, 53], and world models [54, 55]. However, these methods may overlook
the coordination of the two limbs. Recently, several whole-body control methods have been proposed,
with the aim of enhancing the robustness of entire systems in locomotion [22, 39, 34] or performing
loco-manipulation tasks [56]. Differently, the upper and lower bodies of our method have the same
objective to track the reference motion, while the lower body still requires maintaining stability and
preventing falling in motion imitation. Other methods collect whole-body control datasets to learn a
humanoid foundation model [56, 57], while requiring a large number of trajectories. In contrast, we
only require a small number of reference motions to learn diverse behaviors.

5 Experiments

In this section, we present experiments to evaluate the effectiveness of PBHC. Our experiments aim
to answer the following key research questions:
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Figure 5: Example motions in our constructed dataset. Darker opacity indicates later timestamps.

• Q1. Can our physics-based motion filtering effectively filter out untrackable motions?
• Q2. Does PBHC achieve superior tracking performance compared to prior methods in simulation?
• Q3. Does the adaptive motion tracking mechanism improve tracking precision?
• Q4. How well does PBHC perform in real-world deployment?

5.1 Experiment Setup

Evaluation Method. We assess the policy’s tracking performance using a highly-dynamic motion
dataset constructed through our proposed motion processing pipeline, detailed in Appendix B.
Examples are shown in Fig. 5. We categorize motions into three difficulty levels: easy, medium, and
hard, based on their agility requirements. For each setting, policies are trained in IsaacGym [29] with
three random seeds and are evaluated over 1,000 rollout episodes.

Metrics. The tracking performance of polices is quantified through the following metrics: Global
Mean Per Body Position Error (Eg-mpbpe, mm), root-relative Mean Per Body Position Error (Empbpe,
mm), Mean Per Joint Position Error (Empjpe, 10−3 rad), Mean Per Joint Velocity Error (Empjve, 10−3

rad/frame), Mean Per Body Velocity Error (Empbve, mm/frame), and Mean Per Body Acceleration
Error (Empbae, mm/frame2). The definition of metrics is given in Appendix D.2.

5.2 Motion Filtering
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Figure 6: The distribution of ELR
of accepted and rejected motions.

To address Q1, we apply our physics-based motion filtering
method (see §3.1) to 10 motion sequences. Among them, 4
sequences are rejected based on the filtering criteria, while
the remaining 6 are accepted. To evaluate the effectiveness of
the filtering, we train a separate policy for each motion and
compute the Episode Length Ratio (ELR), defined as the ratio
of average episode length to reference motion length.

As shown in Fig. 6, accepted motions consistently achieve high
ELRs, demonstrating motions that satisfy the physics-based
metric can lead to better performance in motion tracking. In
contrast, rejected motions achieve a maximum ELR of only
54%, suggesting frequent violations of termination conditions.
These results demonstrate that our filtering method effectively
excludes inherently untrackable motions, thereby improving
efficiency by focusing on viable candidates.

5.3 Main Result

To address Q2, we compare PBHC with three baseline methods: OmniH2O [10], Exbody2 [5], and
MaskedMimic [23]. All baselines employ the exponential form of the reward function for tracking
reference motion, as described in §3.2.1. Implementation details are provided in Appendix D.3.

As shown in Table 1, PBHC consistently outperforms the baselines OmniH2O and ExBody2 across all
evaluation metrics. These improvements can be attributed to our adaptive motion tracking mechanism,
which automatically adjusts tracking factors based on motion characteristics, whereas the fixed,
empirically tuned parameters in the baselines fail to generalize across diverse motions. While
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Table 1: Main results comparing different methods across difficulty levels. PBHC consistently
outperforms deployable baselines and approaches oracle-level performance. Results are reported as
mean ± one standard deviation. Bold indicates methods within one standard deviation of the best
result, excluding MaskedMimic.

Method Eg-mpbpe ↓ Empbpe ↓ Empjpe ↓ Empbve ↓ Empbae ↓ Empjve ↓
Easy
OmniH2O 233.54±4.013 103.67±1.912 1805.10±12.33 8.54±0.125 8.46±0.081 224.70±2.043
ExBody2 588.22±11.43 332.50±3.584 4014.40±21.50 14.29±0.172 9.80±0.157 206.01±1.346
Ours 53.25±17.60 28.16±6.127 725.62±16.20 4.41±0.312 4.65±0.140 81.28±2.052
MaskedMimic (Oracle) 41.79±1.715 21.86±2.030 739.96±19.94 5.20±0.245 7.40±0.333 132.01±8.941

Medium
OmniH2O 433.64±16.22 151.42±7.340 2333.90±49.50 10.85±0.300 10.54±0.152 204.36±4.473
ExBody2 619.84±26.16 261.01±1.592 3738.70±26.90 14.48±0.160 11.25±0.173 204.33±2.172
Ours 126.48±27.01 48.87±7.550 1043.30±104.4 6.62±0.412 7.19±0.254 105.30±5.941
MaskedMimic (Oracle) 150.92±133.4 61.69±46.01 934.25±155.0 8.16±1.974 10.01±0.883 176.84±26.14

Hard
OmniH2O 446.17±12.84 147.88±4.142 1939.50±23.90 14.98±0.643 14.40±0.580 190.13±8.211
ExBody2 689.68±11.80 246.40±1.252 4037.40±16.70 19.90±0.210 16.72±0.160 254.76±3.409
Ours 290.36±139.1 124.61±53.54 1326.60±378.9 11.93±2.622 12.36±2.401 135.05±16.43
MaskedMimic (Oracle) 47.74±2.762 27.25±1.615 829.02±15.41 8.33±0.194 10.60±0.420 146.90±13.32

Figure 7: Ablation study comparing the adaptive motion tracking mechanism with fixed tracking
factor variants. The adaptive mechanism consistently achieves near-optimal performance across all
motions, whereas fixed variants exhibit varying performance depending on motions.

MaskedMimic performs well on certain metrics, it is primarily designed for character animation and
is not deployable for robot control, as it does not account for constraints such as partial observability
and action smoothness. Therefore, we treat it as an oracle-style lower bound rather than a directly
comparable baseline.

5.4 Impact of Adaptive Motion Tracking Mechanism

To investigate Q3, we conduct an ablation study evaluating our adaptive motion tracking mecha-
nism (§3.2) against four baseline configurations with fixed tracking factor set: Coarse, Medium,
UpperBound, LowerBound. The tracking factors in Coarse, Medium, UpperBound, and LowerBound
are roughly progressively smaller, with LowerBound approximately corresponding to the smallest
tracking factor derived from the adaptive mechanism after training convergence, while UpperBound
approximately corresponds to the largest. The specific configuration of baselines and the converged
tracking factors of the adaptive mechanism are given in Appendix D.4.

As shown in Fig. 7, the performance of the fixed tracking factor configurations (Coarse, Medium,
LowerBound and UpperBound) varies between different motion types. Specifically, while Lower-
Bound and UpperBound achieve strong performance on certain motions, they perform suboptimally
on others, indicating that no single fixed setting consistently yields optimal tracking results on all
motions. In contrast, our adaptive motion tracking mechanism consistently achieves near-optimal
performance across all motion types, demonstrating its effectiveness in dynamically adjusting the
tracking factor to suit varying motion characteristics.
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Figure 8: Our robot masters highly-dynamic skills in the real world. Time flows left to right.

5.5 Real-World Deployment

As shown in Fig. 8, 11 and the supporting videos, our robot in real world demonstrates outstanding
dynamic capabilities through a diverse repertoire of advanced skills: (1) sophisticated martial arts
techniques including powerful boxing combinations (jabs, hooks, and horse-stance punches) and high-
degree kicking maneuvers (front kicks, jump kicks, side kicks, back kicks, and spinning roundhouse
kicks); (2) acrobatic movements such as full 360-degree spins; (3) flexible motions including deep
squats and stretches; (4) artistic performances ranging from dynamic dance routines to graceful Tai
Chi sequences. This comprehensive skill set highlights our system’s remarkable versatility, dynamic
control, and real-world applicability across both athletic and artistic domains.

To quantitatively assess our policy’s tracking performance, we conduct 10 trials of the Tai Chi
motion and compute evaluation metrics based on the onboard sensor readings, as shown in Table 2.
Notably, the metrics obtained in the real world are closely aligned with those from the sim-to-sim
platform MuJoCo, demonstrating that our policy can robustly transfer from simulation to real-world
deployment while maintaining high-performance control.

Table 2: Comparison of tracking performance of Tai Chi between real-world and simulation. The
robot root is fixed to the origin since it’s inaccessible in real-world.

Platform Empbpe ↓ Empjpe ↓ Empbve ↓ Empbae ↓ Empjve ↓
MuJoCo 33.18±2.720 1061.24±83.27 2.96±0.342 2.90±0.498 67.71±6.747
Real 36.64±2.592 1130.05±9.478 3.01±0.126 3.12±0.056 65.68±1.972

6 Conclusion & Limitations

This paper introduces PBHC, a novel RL framework for humanoid whole-body motion control that
achieves outstanding highly-dynamic behaviors and superior tracking accuracy through physics-based
motion processing and adaptive motion tracking. The experiments show the motion filtering metric
can efficiently filter out trajectories that are difficult to track, and the adaptive motion tracking method
consistently outperforms baseline methods on tracking error. The real-world deployments demonstrate
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robust behaviors for athletic and artistic domains. These contributions push the boundaries of
humanoid motion control, paving the way for more agile and stable real-world applications.

However, our method still has limitations. (i) It lacks environment awareness, such as terrain
perception and obstacle avoidance, which restricts deployment in unstructured real-world settings. (ii)
Each policy is trained to imitate a single motion, which may not be efficient for applications requiring
diverse motion repertoires. We leave research on how to maintain high dynamic performance while
enabling broader skill generalization for the future.
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A Derivation of Optimal Tracking Sigma

We recall the bi-level optimization problem in (6), as

max
σ∈R+

Jex(x∗) (9a)

s.t. x∗ ∈ arg max
x∈RN

+

J in(x, σ) +R(x) (9b)

Assuming R(x) takes a linear form R(x) = Ax+ b, Jex, and J in are twice continuously differentiable and
the lower-level problem Eq. (9b) has a unique solution x∗(σ). Then we take an implicit gradient approach to
solve it. The gradient of Jex w.r.t. σ is:

dJex

dσ
=

dx∗(σ)

dσ

⊤
∇xJ

ex(x∗(σ)). (10)

To obtain dx∗(σ)
dσ

, since x∗(σ) is a lower-level solution, it satisfies:

∇x(J
in(x∗(σ), σ) +R(x)) = 0. (11)

Take the first-order derivative of Eq. (11) w.r.t. σ, then we have:

d

dσ
(∇x(J

in(x∗(σ), σ) +R(x)) = ∇2
σ,xJ

in +
dx∗(σ)

dσ

⊤
∇2

x,xJ
in = 0, (12)

dx∗(σ)

dσ

⊤
= −∇2

σ,xJ
in(x∗(σ), σ)∇2

x,xJ
in(x∗(σ), σ)−1. (13)

Substituting Eq. (13) into Eq. (10), we have

dJex

dσ
= −∇2

σ,xJ
in(x∗(σ), σ)∇2

x,xJ
in(x∗(σ), σ)−1∇xJ

ex(x∗(σ)), (14)

where

Jex(x) =

N∑
i=1

−xi, (15a)

J in(x, σ) =

N∑
i=1

exp(−xi/σ). (15b)

Compute first- and second-order gradients in Eq. (14) as

∇xJ
in(x, σ) = exp(−x/σ)(− 1

σ
), (16a)

∇xJ
ex(x) = 1, (16b)

∇2
σ,xJ

in(x, σ) =
σ − x

σ3
⊙ exp(−x/σ), (16c)

∇2
x,xJ

in(x, σ) = diag(exp(−x/σ))/σ2, (16d)

where ⊙ means element-wise multiplication. Substituting (16) into (14) and let the gradient equals to zero
dJex

dσ
= 0, then we have

σ =

∑N
i=1 x

∗
i (σ)

N
. (17)

B Dataset Description

Our dataset integrates motions from: (i) video-based sources, from which motion data is extracted through our
proposed multi-steps motion processing pipeline. The hyperparameters of the pipeline are listed in Table 3; (ii)
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open-source datasets: selected motions from AMASS and LAFAN. The dataset comprises 13 distinct motions,
which are categorized into three difficulty levels—easy, medium, and hard. To ensure smooth transitions, we
linearly interpolate at the beginning and end of each sequence to move from a default pose to the reference
motion and back. The details are given in Table 4.

Table 3: Hyperparameters of multi-steps motion processing.

Hyperparameter Value
ϵstab 0.1
ϵN 100
ϵvel 0.002
ϵheight 0.2

Table 4: The details of the highly-dynamic motion dataset.

Motion name Motion frames Source

Easy
Jabs punch 285 video
Hooks punch 175 video
Horse-stance pose 210 LAFAN
Horse-stance punch 200 video

Medium
Stretch leg 320 video
Tai Chi 500 video
Jump kick 145 video
Charleston dance 610 LAFAN
Bruce Lee’s pose 330 AMASS

Hard
Roundhouse kick 158 AMASS
360-degree spin 180 video
Front kick 155 video
Side kick 179 AMASS

C Algorithm Design

C.1 Observation Space Design

• Actor observation space: The actor’s observation sactor
t includes 5-step history of the robot’s

proprioceptive state sprop
t and the time-phase variable ϕt.

• Critic observation space: The critic’s observation scrtic
t additionally includes the base linear velocity,

the body position of the reference motion, the difference between the current and reference body
positions, and a set of domain-randomized physical parameters. The details are given in Table 5.

Table 5: Actor and critic observation state space.

State term Actor Dim Critic Dim

Joint position 23 × 5 23 × 5
Joint velocity 23 × 5 23 × 5
Root angular velocity 3 × 5 3 × 5
Root projected gravity 3 × 5 3 × 5
Reference motion phase 1 × 5 1 × 5
Actions 23 × 5 23 × 5

Root linear velocity – 3 × 5
Reference body position – 81
Body position difference – 81
Randomized base CoM offset* – 3
Randomized link mass* – 22
Randomized stiffness* – 23
Randomized damping* – 23
Randomized friction coefficient* – 1
Randomized control delay* – 1

Total dim 380 630
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*Several randomized physical parameters used in domain randomization are part of the critic observation to
improve value estimation robustness. The detailed settings of domain randomization are given in Appendix C.3.

C.2 Reward Design

All reward functions are detailed in Table 6. Our reward design consists of two main parts: task rewards and
regularization rewards. Specifically, we impose penalties when joint position exceeds the soft limits, which are
symmetrically scaled from the hard limits by a fixed ratio (α = 0.95):

m = (qmin + qmax)/2, (18a)
d = qmax − qmin, (18b)

qsoft-min = m− 0.5 · d · α, (18c)
qsoft-max = m+ 0.5 · d · α, (18d)

where q is the joint position. The same procedure is applied to compute the soft limits for joint velocity q̇ and
torque τ .

Table 6: Reward terms and weights.

Term Expression Weight

Task

Joint position exp(−∥qt − q̂t∥22/σjpos) 1.0
Joint velocity exp(−∥q̇t − ˆ̇qt∥22/σjvel) 1.0
Body position exp(−∥pt − p̂t∥22/σpos) 1.0
Body rotation exp(−∥θt ⊖ θ̂t∥22/σrot) 0.5
Body velocity exp(−∥vt − v̂t∥22/σvel) 0.5
Body angular velocity exp(−∥ωt − ω̂t∥22/σang) 0.5
Body position VR 3 points exp(−∥pvr

t − p̂vr
t ∥22/σpos_vr) 1.6

Body position feet exp
(
−∥pfeet

t − p̂feet
t ∥22/σpos_feet

)
1.0

Max Joint position exp
(
−∥qt − q̂t∥∞ / σmax_jpos

)
1.0

Contact Mask 1− ∥ct − ĉt∥1/2 0.5

Regularization

Joint position limits I(q /∈ [qsoft-min, qsoft-max]) -10.0
Joint velocity limits I(q̇ /∈ [q̇soft-min, q̇soft-max]) -5.0
Joint torque limits I(τ /∈ [τsoft-min, τsoft-max]) -5.0
Slippage ∥vfeet

xy ∥22 · I[∥F feet∥2 ≥ 1] -1.0
Feet contact forces min(∥F feet − 400∥22, 0) -0.01
Feet air time[30] I[Tair > 0.3] -1.0
Stumble I[

∥∥F feet
xy

∥∥ > 5 · F feet
z ] -2.0

Torque ∥τ∥22 -1e-6
Action rate ∥at − at−1∥22 -0.02
Collision Icollision -30
Termination Itermination -200

C.3 Domain Randomization

To improve the transferability of our trained polices to real-world settings, we incorporate domain randomization
during training to support robust sim-to-sim and sim-to-real transfer. The specific settings are given in Table 7.

C.4 PPO Hyperparameter

The detailed PPO hyperparameters are shown in Table 8.
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Table 7: Domain randomization settings.

Term Value

Dynamics Randomization

Friction U(0.2, 1.2)
PD gain U(0.9, 1.1)
Link mass(kg) U(0.9, 1.1)× default
Ankle inertia(kg·m2) U(0.9, 1.1)× default
Base CoM offset(m) U(−0.05, 0.05)
ERFI[58](N·m/kg) 0.05× torque limit
Control delay(ms) U(0, 40)

External Perturbation

Random push interval(s) [5, 10]
Random push velocity(m/s) 0.1

Table 8: Hyperparameters related to PPO.

Hyperparameter Value

Optimizer Adam
Batch size 4096
Mini Batches 4
Learning epoches 5
Entropy coefficient 0.01
Value loss coefficient 1.0
Clip param 0.2
Max grad norm 1.0
Init noise std 0.8
Learning rate 1e-3
Desired KL 0.01
GAE decay factor(λ) 0.95
GAE discount factor(γ) 0.99
Actor MLP size [512, 256, 128]
Critic MLP size [768, 512, 128]
MLP Activation ELU

C.5 Curriculum Learning

To imitate high-dynamic motions, we introduce two curriculum mechanisms: a termination curriculum that
gradually reduces tracking error tolerance, and a penalty curriculum that progressively increases the weight of
regularization terms, promoting more stable and physically plausible behaviors.

• Termination Curriculum: The episode is terminated early when the humanoid’s motion deviates
from the reference beyond a termination threshold θ. During training, this threshold is gradually
decreased to increase the difficulty:

θ ← clip (θ · (1− δ), θmin, θmax) , (19)

where the initial threshold θ = 1.5, with bounds θmin = 0.3, θmax = 2.0, and decay rate δ =
2.5× 10−5.

• Penalty Curriculum: To facilitate learning in the early training stages while gradually enforcing
stronger regularization, we introduce a scaling factor α that increases progressively to modulate the
influence of the penalty term:

α← clip (α · (1 + δ), αmin, αmax) , r̂penalty ← α · rpenalty, (20)

where the initial penalty scale α = 0.1, with bounds αmin = 0.0, αmax = 1.0, and growth rate
δ = 1.0× 10−4.

C.6 PD Controller Parameter

The gains of the PD controller are listed in Table 9. To improve the numerical stability and fidelity of the
simulator in training, we manually set the inertia of the ankle links to a fixed value of 5× 10−3.

Table 9: PD controller gains.

Joint name Stiffness (kp) Damping (kd)
Left/right shoulder pitch/roll/yaw 100 2.0
Left/right shoulder yaw 50 2.0
Left/right elbow 50 2.0
Waist pitch/roll/yaw 400 5.0
Left/right hip pitch/roll/yaw 100 2.0
Left/right knee 150 4.0
Left/right ankle pitch/roll 40 2.0
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D Experimental Details

D.1 Experiment Setup

• Compute platform: Each experiment is conducted on a machine with a 24-core Intel i7-13700 CPU
running at 5.2GHz, 32 GB of RAM, and a single NVIDIA GeForce RTX 4090 GPU, with Ubuntu
20.04. Each of our models is trained for 27 hours.

• Real robot setup: We deploy our policies on a Unitree G1 robot. The system consists of an onboard
motion control board and an external PC, connected via Ethernet. The control board collects sensor
data and transmits it to the PC using the DDS protocol. The PC maintains observation history, performs
policy inference, and sends target joint angles back to the control board, which then issues motor
commands.

D.2 Evaluation Metrics

• Global Mean Per Body Position Error (Eg-mpbpe, mm): The average position error of body parts in
global coordinates.

Eg-mpbpe = E
[∥∥∥pt − pref

t

∥∥∥
2

]
. (21)

• Root-Relative Mean Per Body Position Error (Empbpe, mm): The average position error of body parts
relative to the root position.

Empbpe = E
[∥∥∥(pt − proot,t)− (pref

t − pref
root,t)

∥∥∥
2

]
. (22)

• Mean Per Joint Position Error (Empjpe, 10−3 rad): The average angular error of joint rotations.

Empjpe = E
[∥∥∥qt − qref

t

∥∥∥
2

]
. (23)

• Mean Per Joint Velocity Error (Empjve, 10−3 rad/frame): The average error of joint angular velocities.

Empjve = E
[∥∥∥∆qt −∆qref

t

∥∥∥
2

]
, (24)

where ∆qt = qt − qt−1.

• Mean Per Body Velocity Error (Empbve, mm/frame): The average error of body part linear velocities.

Empbve = E
[∥∥∥∆pt −∆pref

t

∥∥∥
2

]
, (25)

where ∆pt = pt − pt−1.

• Mean Per Body Acceleration Error (Empbae, mm/frame²): The average error of body part accelerations.

Empbae = E
[∥∥∥∆2pt −∆2pref

t

∥∥∥
2

]
, (26)

where ∆2pt = ∆pt −∆pt−1.

D.3 Baseline Implementations

To ensure fair comparison, all baseline methods are trained separately for each motion. We consider the following
baselines:

• OmniH2O: OmniH2O adopts a teacher-student training paradigm. We moderately increase the
tracking reward weights to better match the G1 robot. In our setup, the teacher and student policies are
trained for 20 and 10 hours, respectively.

• Exbody2: ExBody2 utilizes a decoupled keypoint-velocity tracking mechanism. The teacher and
student policies are trained for 20 and 10 hours, respectively.

• MaskedMimic: MaskedMimic comprises three sequential training phases and we utilize only the
first phase, as the remaining stages are not pertinent to our tasks. The method focuses on reproducing
reference motions by directly optimizing pose-level accuracy, without explicit regularization of
physical plausibility. Each policy is trained for 18 hours.
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D.4 Tracking Factor Configurations

We define five sets of tracking factors: Coarse, Medium, UpperBound, LowerBound, and the initial values of
Ours, as shown in Table 10. We also provide the converged tracking factors of our adaptive mechanism in
Table 11.

Table 10: Tracking factors in different configurations.

Factor term Ours(Init) Coarse Medium Upperbound Lowerbound

Joint position 0.3 0.3 0.1 0.08 0.02
Joint velocity 30.0 30.0 10.0 5.0 2.5
Body position 0.015 0.015 0.005 0.002 0.0003
Body rotation 0.1 0.1 0.03 0.4 0.02
Body velocity 1.0 1.0 0.3 0.12 0.03
Body angular velocity 15.0 15.0 5.0 3.0 1.5
Body position VRpoints 0.015 0.015 0.005 0.003 0.0003
Body position feet 0.01 0.01 0.003 0.003 0.0002
Max joint position 1.0 1.0 0.3 0.5 0.25

Table 11: Converged tracking factors of our adaptive mechanism across different motions in the
ablation study of Section 5.4.

Factor term Jabs punch Charleston dance Bruce Lee’s pose Roundhouse kick

Joint position 0.0310 ± 0.0002 0.0360 ± 0.0016 0.0268 ± 0.0009 0.0261 ± 0.0005
Joint velocity 2.8505 ± 0.0419 5.5965 ± 0.1797 3.6053 ± 0.0323 4.3859 ± 0.0537
Body position 0.0007 ± 0.0000 0.0023 ± 0.0001 0.0025 ± 0.0000 0.0010 ± 0.0000
Body rotation 0.0998 ± 0.0000 0.0544 ± 0.0016 0.0046 ± 0.0001 0.0829 ± 0.0176
Body velocity 0.0554 ± 0.0006 0.0941 ± 0.0013 0.0768 ± 0.0001 0.0929 ± 0.0008
Body angular velocity 1.8063 ± 0.0076 2.8267 ± 0.0841 2.1706 ± 0.0050 3.0238 ± 0.0303
Body position VRpoints 0.0008 ± 0.0000 0.0031 ± 0.0002 0.0024 ± 0.0000 0.0015 ± 0.0000
Body position feet 0.0006 ± 0.0000 0.0031 ± 0.0001 0.0028 ± 0.0000 0.0011 ± 0.0000
Max joint position 0.3963 ± 0.0003 0.4339 ± 0.0124 0.3299 ± 0.0064 0.3352 ± 0.0010

E Additional Experimental Results

E.1 Analysis of Contact Mask Estimation and Motion Correction Method
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Figure 9: Accuracy of contact mask estimation across different methods.

Fig. 9 illustrates the accuracy of the proposed contact mask estimation method, evaluated on a manually labeled
motion dataset with 10 samples. The proposed approach demonstrates an impressive accuracy of 91.4%.

Fig. 10 presents a visual comparison of the efficacy of the proposed motion correction technique in mitigating
floating artifacts. Prior to motion correction, the overall height of the SMPL model is noticeably elevated relative
to the ground level. In contrast, after applying the correction, the model’s motion aligns more accurately with
the ground plane, effectively reducing the observed floating artifacts.
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Figure 10: Visualization of motion correction effectiveness in mitigating floating artifacts.

E.2 Ablation Study of Adaptive Motion Tracking Mechanism

Table 12 presents the ablation study results evaluating the impact of different tracking factors on four motion
tasks: Jabs Punch, Charleston Dance, Roundhouse Kick, and Bruce Lee’s Pose.

Table 12: Ablation results of adaptive motion tracking mechanism in Section 5.4.

Method Eg-mpbpe ↓ Empbpe ↓ Empjpe ↓ Empbve ↓ Empbae ↓ Empjve ↓
Jabs punch
Ours 44.38±7.118 28.00±3.533 783.36±11.73 5.52±0.156 6.23±0.063 88.01±2.465
Coarse 63.95±6.680 36.76±2.743 921.50±16.70 6.16±0.011 6.46±0.042 91.46±0.465
Medium 51.07±2.635 30.93±2.635 790.54±22.82 5.68±0.140 6.31±0.057 90.19±1.821
Upperbound 45.74±1.702 28.72±1.702 793.52±8.888 5.43±0.066 6.29±0.085 88.68±0.727
Lowerbound 48.66±0.488 28.97±0.487 781.73±16.72 5.61±0.079 6.31±0.026 88.44±1.397

Charleston dance
Ours 94.81±14.18 43.09±5.748 886.91±74.76 6.83±0.346 7.26±0.034 162.70±7.133
Coarse 119.24±4.501 55.80±1.324 1288.02±3.807 7.54±0.180 7.28±0.021 178.61±3.304
Medium 83.63±3.159 41.02±1.743 933.33±38.23 6.89±0.185 7.22±0.011 164.92±4.380
Upperbound 86.90±8.651 41.92±2.632 917.64±14.85 7.02±0.103 7.22±0.041 167.64±1.089
Lowerbound 358.82±10.35 145.42±1.109 1199.21±12.78 8.99±0.050 8.48±0.033 167.25±0.783

Roundhouse kick
Ours 52.53±2.106 28.39±1.400 708.55±16.04 6.85±0.196 7.13±0.046 106.22±0.715
Coarse 76.81±2.863 38.98±2.230 1008.32±29.74 7.49±0.234 7.57±0.044 108.40±0.010
Medium 63.12±5.178 33.74±2.336 806.84±66.23 7.03±0.125 7.32±0.046 104.77±1.319
Upperbound 54.95±2.164 31.31±0.344 766.32±12.92 6.93±0.013 7.19±0.012 105.64±1.911
Lowerbound 70.10±2.674 36.29±1.475 715.01±34.01 7.08±0.102 7.32±0.067 102.50±4.650

Bruce Lee’s pose
Ours 196.22±17.03 69.12±2.392 972.04±49.27 7.57±0.214 8.54±0.198 94.36±3.750
Coarse 239.06±51.74 80.78±15.81 1678.34±394.3 8.42±0.525 8.93±0.422 112.30±10.87
Medium 470.24±249.2 206.92±116.1 4490.80±105.1 9.58±0.085 9.61±0.080 99.65±2.441
Upperbound 250.64±178.6 93.70±65.09 1358.02±561.6 8.31±2.160 8.94±1.384 106.30±23.06
Lowerbound 158.12±2.934 60.54±1.554 955.10±37.04 7.05±0.040 7.94±0.051 81.60±1.277

E.3 Ablation Study of Contact Mask

To evaluate the effectiveness of the contact mask, we additionally conducted an ablation study on three represen-
tative motions characterized by distinct foot contact patterns: Charleston Dance, Jump Kick, and Roundhouse
Kick. We additionally introduce the mean foot contact mask error as a metric:

Econtact-mask = E
[
∥ct − ĉt∥1

]
. (27)

The results, shown in Table 13, demonstrate that our method significantly reduces foot contact errors
Econtact-mask compared to the baseline without the contact mask. In addition, it also leads to noticeable
improvements in other tracking metrics, validating the effectiveness of the proposed contact-aware design.

E.4 Additional Real-World Results

Fig. 11 presents additional results of deploying our policy in the real world, covering more highly-dynamic
motions. These results further validate the effectiveness of our method in tracking high-dynamic motions,
enabling the humanoid to learn more expressive skills.
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Table 13: Ablation results of contact mask.

Method Econtact-mask ↓ Empbpe ↓ Empjpe ↓ Empbve ↓ Empbae ↓
Charleston dance
Ours 217.82±47.97 43.09±5.748 886.91±74.76 6.83±0.346 7.26±0.034
Ours w/o contact mask 633.91±49.74 76.13±53.01 980.40±222.0 7.72±1.439 7.64±0.594

Jump kick
Ours 294.22±6.037 42.58±8.126 840.33±97.76 9.48±0.717 10.21±10.21
Ours w/o contact mask 386.75±6.036 170.28±97.29 1259.21±423.9 16.92±0.012 16.57±5.810

Roundhouse kick
Ours 243.16±1.778 28.39±1.400 708.55±16.04 6.85±0.196 7.33±0.046
Ours w/o contact mask 250.10±6.123 36.76±2.743 921.52±16.70 6.16±0.012 6.46±0.042

Figure 11: Our robot masters more dynamic skills in the real world. Time flows left to right.

F Broader Impact

Our work advances humanoid robotics by enabling the imitation of complex, highly-dynamic human motions
such as martial arts and dancing. This has broad potential in fields like physical assistance, rehabilitation,
education, and entertainment, where expressive and agile robot behavior can support training, therapy, and
interactive experiences. However, such capabilities also raise important ethical and societal concerns. High-
agility robots interacting closely with humans introduce safety risks, and their potential to replace skilled
human roles in performance, instruction, or service contexts may lead to labor displacement. Moreover, the
misuse of advanced motion imitation—for example, in surveillance or military applications—poses security
concerns. These risks call for clear regulation, strong safety mechanisms, and human oversight. Additionally, the
environmental cost of training models and operating physical robots highlights the need for energy-efficient and
sustainable development. We believe this work should be viewed as a step toward responsible, human-aligned
robotics, and we encourage continued dialogue on its societal impact.

21


	Introduction
	Preliminaries
	Methods
	Motion Processing Pipeline
	Adaptive Motion Tracking
	Exponential Form Tracking Reward
	Optimal Tracking Factor
	Adaptive Mechanism

	RL Training Framework

	Related Works
	Experiments
	Experiment Setup
	Motion Filtering
	Main Result
	Impact of Adaptive Motion Tracking Mechanism
	Real-World Deployment

	Conclusion & Limitations
	Derivation of Optimal Tracking Sigma
	Dataset Description
	Algorithm Design
	Observation Space Design
	Reward Design
	Domain Randomization
	PPO Hyperparameter
	Curriculum Learning
	PD Controller Parameter

	Experimental Details
	Experiment Setup
	Evaluation Metrics
	Baseline Implementations
	Tracking Factor Configurations

	Additional Experimental Results
	Analysis of Contact Mask Estimation and Motion Correction Method
	Ablation Study of Adaptive Motion Tracking Mechanism
	Ablation Study of Contact Mask
	Additional Real-World Results

	Broader Impact

